Neelamegarajan Rajesh ON WEAKLY g̃ - CONTINUOUS FUNCTIONS

نویسنده

  • Neelamegarajan Rajesh
چکیده

In this paper, we introduce a new class of functions called weakly g̃-continuous functions and investigate some of their fundamental properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Weakly B - Irresolute Functions

The concept of b-open sets was introduced by Andrijevic. The aim of this paper is to introduce and characterize weakly b-irresolute functions by using b-open sets. 2000 Mathematics Subject Classification: 54C05.

متن کامل

A strong form of β-I-continuous functions

In this paper, β-I-open sets are used to define and investigate a new class of functions called stongly β-I-continuous functions in ideal topological spaces. AMS subject classifications: 54C08

متن کامل

N . Rajesh , E . Ekici and S . Jafari ON NEW SEPARATION AXIOMS IN BITOPOLOGICAL SPACES

The purpose of this paper is to introduce the notions g̃-R0, g̃-R1, g̃-T0, g̃-T1 and g̃-T2 in bitopological spaces.

متن کامل

INCLUSION RELATIONS CONCERNING WEAKLY ALMOST PERIODIC FUNCTIONS AND FUNCTIONS VANISHING AT INFINITY

We consider the space of weakly almost periodic functions on a transformation semigroup (S, X , ?) and show that if X is a locally compact noncompact uniform space, and ? is a separately continuous, separately proper, and equicontinuous action of S on X, then every continuous function on X, vanishing at infinity is weakly almost periodic. We also use a number of diverse examples to show ...

متن کامل

On weakly e*-open and weakly e*-closed Functions

The aim of this paper is to introduce and study two new classes of functions called weakly $e^{*}$-open functions and weakly $e^{*}$-closed functions via the concept of $e^{*}$-open set defined by Ekici cite{erd1}. The notions of weakly $e^{*}$-open and weakly $e^{*}$-closed functions are weaker than the notions of weakly $beta$-open and weakly $beta$-closed functions defined by Caldas and Nava...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012